If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-12=7x
We move all terms to the left:
3x^2-12-(7x)=0
a = 3; b = -7; c = -12;
Δ = b2-4ac
Δ = -72-4·3·(-12)
Δ = 193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{193}}{2*3}=\frac{7-\sqrt{193}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{193}}{2*3}=\frac{7+\sqrt{193}}{6} $
| !6(h+4)=−2h | | -3(3x-5=6x | | 6(h+4)=−2h | | 2x-3+4x=42 | | 7x-21+14x=28-21x | | x+10=-3x38 | | 95=4t-160 | | 2x^2-6x=-12 | | 6x+5=27,5 | | 4y+2=-30 | | -6y+4=-4(2y+2 | | 4(x+6)=5(4+x) | | -24=8x/7 | | (x–2)/4–(3x+5)/7=-3 | | A=(-5,7)yB=(4,2) | | 2(t+6)+3=9+5t | | 2k-k+2=18 | | 12+y=-4 | | 40=4t-160=55 | | 4(x8-20)=-72 | | (-h)=94 | | 4x+2x+2x=16 | | 2(3x+6)=3(2×-6) | | a-a+3a-a=4 | | -0.8(3x+7)+4=-4 | | 4u=8u-15=-63 | | x³=1200 | | 4n+-12n+-19=13 | | -2-2y=3+1 | | (13/2)x=9 | | x-5/4−2=8 | | 2.25-11j-7/75+1.5j=0.5j-1 |